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An asset allocation model with inequalities constraints and coherent risk measure: an 
application to Brazilian equities 

We propose a method for optimal portfolio selection built on the Black and Litterman model and with 

two major contributions. We introduce in the investor objective function a risk measure named 

expected tail loss, which is useful in portfolio selection context as it supports the benefits of 

diversification and we allow investor views to be expressed in terms of linear inequalities among 

expected returns, which seems more natural in the practice of portfolio selection. Further we implement 

the models using market database applied to Brazilian equities. The results show that our approach 

leads to lower risk optimal portfolios and that our proposed methodology to implement the investor 

subjective views led to optimal portfolios with superior outcomes. 

Keywords: Black-Litterman, expected tail loss, portfolio optimization. 

 

Um modelo de alocação de ativos com restrições de desigualdades e medidas de risco 

coerente: uma aplicação para ações brasileiras 

Propomos um método para otimização de carteiras baseado no modelo proposto por Black e Litterman 

com duas contribuições relevantes. Introduzimos na função objetivo do investidor uma medida de risco 

denominada risco de cauda, que é bastante adequada no contexto de seleção de carteiras já que 

considera os princípios da diversificação. Permitimos neste estudo que os investidores expressem 

suas visões acerca dos ativos em termos de desigualdades lineares entre os retornos esperados, o 
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que nos parece mais natural na aplicação prática de seleção de ativos. Os modelos foram 

implementados usando um banco de dados de ações brasileiras. Os resultados mostram que a nossa 

abordagem leva à alocação em carteiras ótimas com menor risco quando comparado aos modelos 

anteriores e que a metodologia proposta para expressar as opiniões dos investidores levaram a 

carteiras ótimas com resultados superiores. 

Palavras-chave: Black-Litterman, risco de cauda, otimização de carteiras. 

INTRODUCTION 

Objective 

The objective of this study is to propose an alternative asset allocation model that is robust to 

parameters uncertainties and estimation errors. 

Relevance 

The relevance of our methodology is illustrated by a portfolio selection experiment on the Brazilian 

equity market. 

Methodology 

Our model builds on the Black-Litterman model for portfolio selection, but allows views to be expressed 

in terms of linear inequalities among expected returns. Also, starting from the observation that positive 

and negative deviations of the returns from their mean usually play a great asymmetric role in the 

investor perception, we decided to use a quantile based measure in the objective function, namely the 

expected tail loss. This is a coherent risk measure which is important in portfolio selection as it supports 

the benefits of diversification. 

ASSET ALLOCATION MODELS AND RELATED LITERATURE 

In 1952 Harry Markowitz published the article “Portfolio Selection” which can be considered as the 

beginning of modern portfolio theory. Portfolio selection is the problem of allocating capital over a 

number of available assets in order to maximize the return on the investment while minimizing its risk. 

In a portfolio context, risk is usually measured by means of a dispersion measure, such as the variance 

or standard deviation (volatility) of returns around their expected value. The result of traditional portfolio 

optimization is a parabolic efficient frontier, indicating the combinations of assets with the highest 

expected return given a certain level of risk. Markowitz framework seems to be very reasonable in 

theory, but it continues to encounter skepticism among investment practitioners. One possible reason 

is the counter-intuitive nature of the optimal portfolios generated ([Michaud (1989), Black Litterman 

(1992)]). Empirical studies have shown that mean-variance optimal portfolio allocations (Markowitz’s 

framework) tend to concentrate on a small subset of the available securities and appear not to be well 
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diversified ([Bera Park (2008)]). Furthermore, optimal portfolios are often sensitive to changes in the 

input parameters of the problem (expected returns and covariance matrix). Mean-variance optimization 

does not take into account the parameters uncertainty, which leads to very unstable results. Such 

observations indicate that the inputs to the mean-variance optimization model need to be very 

accurately estimated.1[Jobson Korkie (1981), Michaud (1989), Best Grauer (1991), Chopra Ziemba 

(1993), Britten-Jones (1999)], among others, argued that the hypersensitivity of the optimal weights in 

the portfolio is the result of the nature of the errors of the mean-variance optimization. 

The unstable results obtained by use of Markowitz model motivated Fisher Black and Robert Litterman 

(1992), then working at Goldman Sachs, to develop a new mean-variance model based on an 

Bayesian analytic framework ([Black Litterman (1992)]). The Black-Litterman (BL) model allows the 

investor to start with a prior belief about expected returns (subjective views) and to update this prior 

distribution with market empirical data (model-based estimates, such as CAPM-implied equilibrium 

returns as an approximation2). Nevertheless it is important to mention that since [Black Litterman 

(1992)] first presented their model, the CAPM has been rejected empirically ( [Fama French (1992), 

Fama French (1993)]) and several asset pricing models, using a multi factor approach have been 

proposed. In this study our focus will be to propose an alternative investor view model and to implement 

different risk measures in the optimization problem. And beeing well aware of the limitations of using a 

misspecified asset pricing model to learn from market prices, we thus decided not to use any model of 

market equilibrium and to capture market expected returns from the weights of a well traded 

benchmark equity index in order to infer the expected returns posterior distribution.3 

The investor views (prior distribution) are represented as linear combinations of estimates of asset 

returns. Each estimate must be provided with a measure of uncertainty associated with that particular 

view, which, given the assumption of normality, is chosen as the variance associated with the estimate. 

A remarkable feature of this approach is soundness. As the posterior expected returns are a 

combination of the prior investor views with the market equilibrium returns, in the absence of subjective 

views, the best strategy is to stick to the market via equilibrium views. On the other hand, if the investor 

has some views, the portfolio should be tilted to reflect these views combined. Since the market view is 

always considered, it is less likely to run into unstable or corner solutions. In case the investor holds 

some strong views that dominate the market view, the model also allows the results to be significantly 

adjusted towards these views. Based on these considerations, the BL model is appealing in theory and 

natural in practice. 

Many studies further advanced the understanding and implementation of BL framework. [Lee (2000)] 

and [Satchell Scowcroft (2000)] elaborated and expanded the theoretical framework, while others, such 

                                                      
1 Markowitz model needs expected returns estimates one step ahead which are usually assumed to be the average of historical 
returns, that is rrE tt  )( 1

 
2  On the other hand, [Sharpe (1974)] proposed to extract expected returns from the weights of a portfolio held by an institution 
rather than from equilibrium weights of the market portfolio. 
3 Despite its popularity, we could not find other study that empirically evaluates the BL model for Brazilian market data. On the other 
hand, we can notice the model is becoming very popular for money management firms, beeing implemented by market data softwares 
(as Bloomberg, for instance), taught at financial schools and covered by investments textbooks. 
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as [Bevan Winkelmann (1998)], [He Litterman (1999)], [Herold (2003)], [Idzorek (2004)], and [Jones, 

Lim Zangari (2007)] focused on implementation. 

 

The rest of the article is organized as follows. In section 2 we review the original BL methodology. In 

section 3 we describe our proposed method for portfolio choice problem addressing the expected tail 

loss framework. In section 4 we proceed with a case study applied to Brazilian equities and in section 5 

we conclude. 

Revisiting Black-Litterman asset allocation model 

The Black-Litterman asset allocation model uses a Bayesian approach to infer the asset expected 

returns as random variables themselves.4 In this study we will follow the approach proposed by 

[Satchell Scowcroft (2000)] and [Christodoulakis (2002)], which is consistent with the definition of 

Bayes Theorem. 

Let us assume that there are N  assets in the market, which may include equities, bonds, currencies 

etc. Unlike in classical statistics in which the means are considered deterministic (though 

unobservable), in the BL framework the actual mean in unknown and stochastic, although the 

covariance matrix of returns is considered well defined. The model applies the “known covariance 

unknown mean" Bayesian solution to statistical inference to generate expected asset returns suitable 

for use in the mean-variance Markowitz-type portfolio allocation. In essence, the approach hereafter 

consists of generating one-step-ahead posterior returns on the assets by means of a 

precision-matrix-weighted combination of the investor prior views5 q  of their future returns with the 

distribution of their implied returns π  obtained by an equilibrium model (or reverse optimization from 

the historic covariance and the benchmark index portfolio of securities). 

 

We consider that r~  is the vector of asset returns6 with an unknown and stochastic mean μ~ 7 and a 

well defined N -dimensional covariance matrix Σ  (in particular, non-singular), 

 

 ),~(~ Σμr N~  (1) 

 
Investor Prior Views 

Our first step is to model the investor views. BL model considers views on expectations. In the normal 

market (1), this corresponds to statements on the parameter μ~ . Furthermore, BL focus on linear 

                                                      
4 As they are not observable, one can only infer their probability distribution. 
5 We use boldface font for vectors to distinguish them from scalars. 
6 Unless otherwise specified, all returns refer to excess returns. The expected excess return of an asset is the expected return in the 
domestic currency minus the domestic cash return (also called risk free rate), given by 

freerE ]~[r . 

7 The expected return is shorthand for ]|~[ 1 tt IE r , where tI  refers to all information up to time t. 
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views8 which can be relative as well as absolute. These may have direct implications for the securities 

he cover and also, owing to the dependence structure, indirect implications for those in the universe of 

securities not covered. In addition, considering (1), each view must assign a level of variance to 

quantify uncertainty around the estimate. 

 

Let K  be the total number of views, where NK   , P  be a NK  matrix of view structure 

parameters whose rows are these assets (or portfolios) weights and q  be a K-vector of the expected 

returns on these portfolios. The views can be expressed by 

 

 ~=~ qμP  (2) 

 

where KxNP  is known, Kq  is known and μ~  is the (unknown but required) posterior vector of 

expected return estimates. ε~  is the unobservable vector of view estimation errors that is normally 

distributed as follows 

 

 ),(~ Ω0ε N~  (3) 

 

where 0  is a vector of zeros and KxKΩ  is a diagonal variance matrix of view estimation errors, 

which, for simplicity, are considered independent across views. We can parameterize the prior 

distribution of expected returns as 

 
 )|,|(~

pp IIN ΩqP ~  (4) 

 

where the location and dispersion parameters rely solely on the prior information pI . 

Market equilibrium returns 

Secondly we define the equilibrium risk premiums as π 9in terms of CAPM (or either in the sense of a 

value weighted index, a benchmark portfolio, for instance). Assuming that all investors share the same 

view and at that moment there is only one optimal portfolio, this portfolio is the one that contains all 

assets proportional to their capitalization weights, that is the market portfolio mw . The equilibrium risk 

premiums are such that the demand for these assets exactly equals to the outstanding supply ([Black 

(1989)]). Assuming the validity of CAPM, it follows that 

 
 )][(= freem rrE βπ  (5) 

                                                      
8 in terms of linear combinations of the securities expected returns. 
9 where   freerE rπ ~=   
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where  

 
2

)',(
=

m

Cov


mwrr

β  (6) 

 

where mr  is the global market return, freer  is the risk less cash return, β  is a vector of N asset betas, 

r  is also a vector of N asset estimated returns, mwr'  is the market estimated return and 2
m  is the 

variance of the market returns. Let )',(= rrΣ Cov , then 

 
 mΣwπ =  (7) 

where the average global risk aversion parameter is given by   (and 
2

][
=




freem rrE 
).10 

 

The expected returns μ~  are considered to be random variables themselves with a probability 

distribution centered at the equilibrium returns and variance proportional to the covariance matrix of the 

returns. They are assumed to be normally distributed with the mean of π  

 επμ ~=~   (8) 

 

where ),(~ Σ0ε N~ . As the market is not necessarily in equilibrium, the assessment π  suffers from 

errors. Moreover, the elements of Σ  should be smaller than those of Σ  in a market demonstrating 

some level of semi strong form of market efficiency ([Fama (1965)]). Thus the parameter   is an 

scalar between (0,1) . 

The likelihood function of the data equilibrium returns given the investor prior beliefs, is thus given by 

 

 )|,~(),~|( eqeq INIf Σμμπ ~  (9) 

 

where μ~  is the unobservable mean and π  and Σ  are estimated encompassing all the equilibrium 

information eqI  contained in the distribution. 

Using Bayes Theorem for the Estimation Model 

At this point, we apply Bayes theory to blend the prior distribution and the likelihood function to create a 

new posterior distribution of the asset expected returns. It is more natural to think of π  as the input of 

the quantitative investor, given it depends upon data. That was the reason why we defined its 

                                                      
10 which is a positive scalar.  
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distribution as the likelihood function (or conditional distribution) and the conjugate prior distribution 

was represented by the investor particular views. 

 

We can write the posterior expected return distribution, applying Bayes rule, as 

 

 
)(

)~()~|(
=)|~(

π

μμπ
πμ

f

ff
f  (10) 

 

where )~|( μπf  is the conditional pdf of the data equilibrium return, upon the investor common beliefs, 

)~(μf  is known as the prior pdf that expresses the investors’ views and )(πf  represents the marginal 

pdf of equilibrium returns, a constant that will be absorbed into the integrating constant of the )|~( πμf  

And by substituting the distributions (4) and (9) in (10) we get 

 

 ),(~ 
BLBLN Σμπ)|μf( ~  (11) 

 

where the mean is given by 

 

    qΩPπΣPΩPΣμ 11111 )()(=   BL  (12) 

 

and the covariance matrix is given by 

 

  PΩPΣΣ 11)(=  
BL  (13) 

 

This posterior covariance matrix is essentially the uncertainty in the posterior mean estimate about the 

actual mean and not the covariance of the returns itself. To compute the posterior covariance of 

returns, we need to add 11 the covariance of the estimate about the mean to the variance of the 

distribution about the estimate as 

 

 ΣΣΣ  
BLBL  (14) 

 

where Σ  is the known covariance of returns and 
BLΣ  is the covariance of the posterior distribution 

about the true mean. 

 

                                                      
11 Given that the error in the estimate of the mean return is independent of the covariance of the returns around the true mean. 
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Given the mean BLμ  and the covariance matrix BLΣ , the optimal portfolio can be calculated by a 

standard mean-variance optimization method. Assuming a risk aversion parameter  , the 

maximization problem can be written as: 

 

 wΣwμw
w

BLBL
n


 2

max


 (15) 

 

Calculating the first order condition we can get 

 

 BLBLμΣw* 11
= 


 (16) 

 

where *w  is the vector of the optimal portfolio weights. 

 

METHODOLOGY DETAILING 

Our proposed model builds on the BL model for portfolio selection, basically adding two contributions. 

The first is that we introduce in the investor objective function a risk measure named expected tail loss, 

which is useful in portfolio selection context as it supports the benefits of diversification. The second is 

to allow investor views to be expressed in terms of linear inequalities among expected returns, which 

seems more natural in the practice of portfolio selection. 

 

The mean-variance framework has some limitations, when the random outcome of assets follows a 

non-normal distribution. It has long been recognized that there are several conceptual difficulties using 

variance as a measure of risk. Quadratic utility functions displays undesirable properties of satiation as 

well as increasing absolute risk aversion ([Huang Litzenberger (1988)]). Furthermore, the assumption 

of elliptically symmetric return distributions is problematic. In practice we observe asymmetric return 

distributions which make variance an inadequate risk measure, as it equally penalizes desirable upside 

and undesirable downside returns ([Kroner Ng (1998)]). Motivated by those difficulties, alternative 

downside risk measures have been proposed and analyzed in the literature ([Bertsimas, Lauprete 

Samarov (2004)]). In recent years, financial practitioners have extensively used quantile-based risk 

measures, such as Value-at-Risk (VaR). However, for non-normal distributions, it is well known that 

VaR may have undesirable properties.12 Also, VaR is difficult to optimize for discrete distributions, 

when it is calculated using scenarios. In this case, VaR is both a non convex and non smooth function 

of positions and also has multiple local extrema, which causes considerable difficulties in portfolio 

selection models ([Rockafellar (1970)]). Given those shortcomings of VaR, we decided to adopt 

another percentile risk measure, a coherent measure of risk in the sense of Artzner et al. [1999] called 

                                                      
12 Artzner et al. [1999] propose axioms that risk measures (called coherent) should satisfy and show that VaR is not a coherent risk 
measure because it violates one of their axioms: the sub-additivity. In fact, it is coherent only when it is based on the standard deviation 
of normal distributions. (see the Appendix A) 
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expected tail loss (ETL).13 [Rockafellar Uryasev (2000)] provide a simple algorithm for optimizing 

portfolios using a simulation-based expected tail loss measure. Their approach is the foundation for the 

analysis that follows. 

Expected tail loss framework 

Let ),( yxf  be the loss associated with the decision vector x , to be selected from a certain subset 

nX  and a random vector my . The vector x  can be interpreted as a portfolio, where X  is 

the set of available portfolios (subject to some constraints) and the vector y  stands for the 

uncertainties that affect the portfolio results, such as market prices, for instance. For each x , the loss 

),( yxf  is a random variable having a distribution defined in   induced by the underlying probability 

distribution of my  denoted by p(y) .14 The probability of ),( yxf  not exceeding a threshold   

is given by 

 

 yyx
yx

dpF
f

)(=),(
),(



  (17) 

 

where ),( xF  is the cumulative distribution function for the loss associated with x . Thus ),( xF  is 

nondecreasing with respect to   and it is assumed to be everywhere continuous with respect to  . 

 

We will denote the VaR at the   percent probability level15 by )(x  defined by 

 
  .),(:=)(   xx Fmin  (18) 

 

We then define the following function denoted by e 16 for the loss random variable associated with x  

and any specified probability level (0,1) : 

 

 yyyxx
xyx

dpfe
f

)(),()(1=)(
)(),(

1








   (19) 

where )(xe  can be interpreted as the conditional expectation of the loss associated with x  relative 

to that loss being )(x  or greater. 

 

                                                      
13 The important cons of ETL are that it is more sensitive than VaR to estimation errors and its accuracy is heavily affected by the 
accuracy of the tail modeling. 
14 We will assume, for simplicity, that the distribution has density. [Rockafellar  Uryasev (2000)] define ETL for general distributions. 
15 which is the lower bound that is reached with given probability. 
16 which is the expected loss assuming that the lower bound is reached. 
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ETL by simulation methods 
 

Assets logarithmic returns are traditionally assumed to follow a normal distribution, implying excess 

kurtosis to be zero ([Alexander (1998), Jorion (2000)]). Under this assumption, )(re  can be 

calculated analytically. However, this assumption is too restrictive and seldom holds. Standard 

statistical tests suggest heavy tails for most of financial time series (Fama [1965] and Mandelbrot 

[1963] provide evidence of the excess kurtosis of asset returns in the 1960s). Therefore, in our study, 

we apply the following method to calculate the ETL in the objective function. 

One important contribution of [Rockafellar Uryasev (2000)] was to suggest the use of an auxiliary 

objective function instead of 
)(xe

 that has better computational properties.17. They prove that both 

)(x  and 
)(xe

 can be described as particular cases of a general function   defined by 

 

 yyyxx
y

dpf

m

)(]),([)(1=),( 1 



     (20) 

 

where  ,0=][  max

. 

 

One of its very desirable features is that, as a function of  , ),(  x  is convex and continuously 

differentiable. And the )(xe  of the loss associated with any Xx  can be determined from the 

formula 

 
 ),(min=)( 


 xx 



e  (21) 

 

where the set of the values of   for which the minimum is attained is a nonempty, closed, bounded 

interval and the )(x  is given by 

 
 ),(argminofendpointleft=)(   xx   (22) 

 

Therefore, minimizing )(xe  of the loss associated with x  over all Xx  is equivalent to minimize 

),(  x  over all  xX)(x,  

 
 ),(min=)(min 


 xx

X)(x,


 xXx
e  (23) 

                                                      
17 The expression (19) involves multidimensional integration. Such evaluation is computationally prohibitive above the fourth 
dimension. 
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As it is not necessary, for the purpose of determining the vector x , to work directly with the function 

)(xe  in (19), we will use this technique to minimize the simulation-based expected shortfall. 

 

The integral in equation (20) can be approximated by sampling the probability distribution of y  

according to its density )(yp . Supposing it generates a collection of vectors J21 ,...yy,y , its 

approximation is calculated as follows: 

 

 



  ]),([)(]),([
1=

 yxyyyx
y

fprdpf j

J

j
m

 (24) 

 

where jpr  are probabilities of scenarios jy .18 

 

Further after discretization, by using dummy variables Jjz j 1,2,...=, ,the approximated function can 

be replaced by the linear function: 

 

 ,)(1
1=

1
jj

J

j

zpr   (25) 

 

and the set of linear constraints: 

 
   ,1,...,=0,,),( Jjzfz jj yx  (26) 

 

To get to the optimization problem we need to define the loss function and the risk and value 

constraints. Let us consider a portfolio composed of n  different instruments among which there is one 

risk free asset (cash or bank account). Let ),...,(= 00
2

0
1


nxxx0x  be the positions in the initial portfolio 

and ),...,(= 00
2

0
1


nyyy0y  the initial prices for the instruments. The inner product 00 xy 

 corresponds to 

the initial portfolio value. Let ),...,(= 21


nxxxx  be the positions in the optimized portfolio (that we 

intend to calculate using our algorithm) and ),...,(= 21


nyyyy  the scenario dependent prices for each 

instrument. The loss function can be calculated as 

 

 xyxyyxyx 0000 ''=),;,( f  (27) 

                                                      
18 If the loss function is linear with respect to x , then the function    ]),([)(1=),(

1=

1  yxx fprj

J

j
 is convex 

and piecewise linear, which is the matter of our case study. 
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which is linear and convex in x . 

 

We will consider a practical issue to define the risk constraint. We calculate the portfolio ETL at different 

confidence levels, considering   as the percentage of the initial portfolio value that the investor is 

allowing for risk exposure. And as the loss function is convex in x , therefore, (x)e  function is also 

convex in x . The set of linear constraints is defined as 

 

 ,)(1 00

1=1=

1
ii

n

i
jj

J

j

xyzpr      (28) 

 
 

 







,1,...,=0,

,)( 00

1=

Jjz

xyxyz

j

iijii

n

i
j  (29) 

 

And finally, in our optimization problem the individual must be fully invested, although short positions 

are allowed. We can define this as the budget constraint: 1=x , where   corresponds to the 

n-vector of ones. 

In the above constrained minimization problem we can observe that both the objective function and the 

constrains are linear functions of the decision variable. Since all linear functions are convex, it may be 

solved using a LP-solver. 

CASE STUDY: PORTFOLIO OF BOVESPA STOCKS 

We now proceed with a case study to calculate optimal portfolios of Brazilian stocks combining a more 

appropriate risk measure with scenario generation procedures, considering investors subjective 

opinions about expected returns. We have two main purposes in the research. The first is to test the 

value added by BL approach to the traditional mean-variance optimal portfolio composed of Brazilian 

equities. In this step we consider the analytic framework proposed by Black and Litterman. We 

calculate the mean vector for the expected returns as well as the posterior covariance matrix of returns. 

We consider them as the inputs in the MV model and generate the optimal portfolio for the analytic BL 

model. The second purpose is to substitute the variance by the expected tail loss in the objective 

function. We first optimize for the mean-ETL model using stocks returns simulated from a multivariate 

Gaussian distribution19. In the next step, to consider the investors’ views in the optimal portfolio, we 

substitute the historical data by the BL calculated expected returns and posterior covariance matrix as 

                                                      
19 We have used historical data (mean and covariance matrix) for scenarios generation. Although it is well documented in many 
academics studies that historical returns provide very little information on the actual returns ([Jorion (2000), Michaud (1989)]), it is still 
the most applied method by practitioners. 
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inputs in the simulation-based analysis. Finally, we backtest the optimized portfolios20 to evaluate their 

performances out of sample. The models suggested bellow must be considered as one period of the 

multi-period investment models to be used in a realistic environment. The optimization algorithm is 

implemented and solved using Matlab. 

 

How to create the investor views 

We choose to describe the investor views using a realistic approach. Usually, equity research analysts 

use a very well studied measure as a criteria to impose different views over the analyzed stocks. As 

documented since 1960 by Nicholson and later by Basu, Sanjoy [1977, 1983] and Jaffe, Jeffrey, Keim, 

Westerfield [1989] it was shown that stocks with high earnings/price ratios (or low P/E ratios) earned 

significantly higher returns than stocks with low earnings/price ratios. And further, they showed that this 

behavior is not just observed among small cap stocks. In this way, we adopted the earnings/price ratio 

as measure to input the investor views to better predict future stock returns. Our database covers the 

time period ranging from 29 December 2005 to 30 June 2011. We collect daily prices for Brazilian 

stocks, adjusted for all splits and dividends in local currency and inflation adjusted, from Economatica 

database system. As standard, we ignored weekends and holidays and concentrate our analysis on 

trading days. The sample stocks must exist during all the studied period. After the above filtering, there 

remains 45 stocks to be considered in this empirical research. 

 

To construct the set of investor views we define three different views. View 1 is set as an absolute view. 

The investor decides to buy an equal weighted portfolio composed of the ten stocks traded at Bovespa 

with the smallest P/E ratio at the last trading day of each year (2005 to 2010)21. This portfolio is 

expected to outperform the Bovespa index for the subsequent year. We define its total expected return 

as the Brazilian government interest rate plus the literature equity risk premium (considered to be 5 

percent per year) plus the portfolio expected alpha return, defined as 10 percent per year. 

 

On the other hand, view 2 is set as a relative view. The investor decides to hold a long and short equal 

weighted portfolio. He buys five stocks with the lowest P/E ratios and sells five stocks with the highest 

P/E ratios, at the end of each year, considering the sample studied. And once more, at the end of each 

year, this portfolio composition may vary, depending on the updated P/E ratios. This long and short 

market neutral portfolio of views is expected to generate an absolute return equal to the Brazilian 

government interest rate of return22. View 3 is also set as a relative view, but, at this stage, the investor 

doesn’t want to be exposed to industry or macroeconomic risks. He holds a long and short equal 

                                                      
20 The basic model considered in this study is the Markowitz model (mean-variance) based on historical mean returns and covariance 
matrix. 
21 This portfolio is rebalanced at the end of each year. 
22 This is the most widespread benchmark portfolio managers set as target to long and short equity strategies in Brazil. We disregard 
stocks rental premium or costs in our analysis. 
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weighted portfolio considering stocks of the same industry. He composes three different portfolios, one 

in each industry studied (energy, finance and mining and steel). He buys the two stocks with the lowest 

P/E ratios and sells the two stocks with the highest P/E ratios, at the end of each year, in each of those 

industries. Also, at the end of each year, this portfolio composition may vary, depending on the updated 

P/E ratios. This long and short industry neutral portfolio of views is expected to generate an absolute 

return equal to half the Brazilian government interest rate of return23. 

 

The Equilibrium portfolio hypothesis 

Using the approach of liquidity to arrive at a fair price, we decide to consider the Bovespa Index 

composition as the appropriate proxy for the equilibrium portfolio for each period. The Bovespa index is 

the most widely quoted share index for Brazil and the most important indicator of the stock market in 

Brazil, representing the average behavior of prices of the main stocks at the Sao Paulo Stock 

Exchange. To simplify, we decide to re-balance the portfolio considering 80 percent of its composition 

at each year. Also, as our sample consists of 45 stocks that existed for the whole period, we rebalanced 

again considering the relative weights in those 45 stocks. This final portfolio will be hereon our market 

equilibrium portfolio. 

We combine the three views above with our equilibrium portfolio to calculate the BL expected mean 

and posterior covariance matrix to be considered as the inputs in the optimization problem. 

We break the sample in 6 subsamples for estimation (2005, 2006, 2007, 2008, 2009, 2010) and, for 

each subsample, the optimal portfolios are rebalanced at the end of each calendar year and its 

performance tested for the subsequent year (out of sample). 

RESULT ANALYSIS 

We propose different returns and risk measures to analyze the optimal portfolios generated by the 

methodologies presented above. Hereon, we compare the out of sample results for the following 

models: analytic mean-variance using historical returns (MV), mean variance optimization using Black 

and Litterman expected returns and posterior covariance matrix as inputs (BLMV), multivariate 

Gaussian returns simulated using historical data as inputs in an optimization problem defined as 

minimizing the expected tail loss function (METL) and finally multivariate Gaussian returns simulated 

using Black and Litterman expected returns and posterior covariance matrix as inputs in an 

optimization problem defined as minimizing the expected tail loss function (BLETL). 

From figure 1 we can analyze the portfolio composition in terms of concentration and maximum 

assumed positions (long or short). For MV and BLMV models, we find optimal portfolios more 

concentrated in few stocks (both for long and short positions), except for year estimation 2009. When 

we analyze the year of 2008, we can observe that the MV optimal portfolio allocate 40% of its 

                                                      
23 This is also a practice in the Brazilian market. As the investor, trading this strategy, is only exposed to company specific risks, its 
expected return is defined to be less than the long and short market neutral portfolio. 
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composition in one stock, which seems very concentrated. In fact, all the results obtained for this year 

must be analyzed considering the stock market crash generated by the sub-prime mortgage crisis in 

the US. Analyzing the portfolio composition histogram for the year of 2008, we notice that the BLETL 

model presented the less concentrated optimal portfolio having 67% of its total portfolio in positions of 

size less than 10% each.  
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Figure 1: Model portfolio composition. 

 

MV BL_MV M_ETL BL_ETL

Estimation period: year calendar 2005

Max weight 37.5% 38.6% 33.6% 33.4%

Min weight -21.1% -19.8% -13.8% -16.9%

< -20% 2% 0% 0% 0%

-20% ≤ w < -10% 4% 11% 4% 7%

-10% ≤ w < -5% 2% 13% 9% 9%

-5% ≤ w < 5% 69% 33% 53% 53%

5% ≤ w < 10% 13% 24% 22% 18%

10% ≤ w < 20% 7% 16% 9% 11%

≥20% 2% 2% 2% 2%

Estimation period: year calendar 2006

Max weight 24.4% 28.5% 24.8% 18.7%

Min weight -14.7% -11.8% -13.3% -16.8%

< -20% 0% 0% 0% 0%

-20% ≤ w < -10% 2% 9% 2% 7%

-10% ≤ w < -5% 13% 11% 16% 9%

-5% ≤ w < 5% 53% 49% 53% 49%

5% ≤ w < 10% 18% 16% 20% 20%

10% ≤ w < 20% 11% 9% 7% 16%

≥20% 2% 7% 2% 0%

Estimation period: year calendar 2007

Max weight 25.7% 37.1% 36.9% 32.0%

Min weight -32.6% -26.9% -32.7% -22.1%

< -20% 4% 2% 2% 2%

-20% ≤ w < -10% 4% 18% 2% 7%

-10% ≤ w < -5% 4% 11% 18% 11%

-5% ≤ w < 5% 53% 24% 42% 44%

5% ≤ w < 10% 16% 24% 16% 13%

10% ≤ w < 20% 13% 16% 18% 18%

≥20% 4% 4% 2% 4%

Estimation period: year calendar 2008

Max weight 40.0% 37.7% 35.2% 36.5%

Min weight -24.2% -23.1% -23.9% -25.9%

< -20% 2% 9% 4% 2%

-20% ≤ w < -10% 11% 16% 13% 9%

-10% ≤ w < -5% 9% 7% 9% 16%

-5% ≤ w < 5% 42% 27% 31% 38%

5% ≤ w < 10% 11% 11% 13% 13%

10% ≤ w < 20% 18% 20% 22% 18%

≥20% 7% 11% 7% 4%

Estimation period: year calendar 2009

Max weight 29.4% 43.3% 29.6% 54.8%

Min weight -21.8% -40.7% -16.7% -43.2%

< -20% 2% 2% 0% 2%

-20% ≤ w < -10% 9% 18% 11% 9%

-10% ≤ w < -5% 9% 7% 4% 16%

-5% ≤ w < 5% 51% 33% 53% 36%

5% ≤ w < 10% 13% 13% 16% 18%

10% ≤ w < 20% 7% 13% 11% 13%

≥20% 9% 13% 4% 7%

Estimation period: year calendar 2010

Max weight 21.6% 33.8% 17.4% 21.4%

Min weight -18.8% -38.8% -22.4% -13.9%

< -20% 0% 9% 2% 0%

-20% ≤ w < -10% 7% 9% 4% 7%

-10% ≤ w < -5% 7% 9% 11% 7%

-5% ≤ w < 5% 47% 33% 49% 58%

5% ≤ w < 10% 27% 13% 13% 20%

10% ≤ w < 20% 11% 13% 20% 7%

≥20% 2% 13% 0% 2%

Weights  His togram

Weights  His togram

Weights  His togram

Weights  His togram

Weights  His togram

Weights  His togram
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We can analyze the optimal portfolios return and risk statistics in figure 2. From the risk perspective, 

both in terms of volatility, maximum draw down and value-at-risk measures, the 4 models presented a 

lower level of risk when compared to the Bovespa index. Highlighting the crisis year of 2008, we can 

verify that while the Bovespa index presented a maximum draw down of almost 60% in absolute terms, 

the BLETL model presented a much smaller loss of 39,7% for the same period. 

In terms of accumulated performance, the BLETL model also presented the lowest loss. Its portfolio 

decreased 29,7% in value when compared to the Bovespa index that decreased 41,2%. Except for 

years 2007 and 2009 (out of sample), the optimal portfolios generated by the 4 different models 

presented better risk adjusted performances when compared to the Bovespa index. And during years 

2007 and 2009, it is important to notice that the Bovespa index out-performances were followed by 

higher risk measures (both volatility, value-at-risk as well as maximum draw downs). When we 

compare the models MV and BLMV we can also verify, except for the year 2008, an improvement in 

absolute return as measured by accumulated, average or percentile return. This behavior in 

performance is not verified when we compare models METL and BLETL. On the other hand, from the 

risk perspective, optimal portfolios generated by BLETL model presented systematically lower losses 

both in terms of value-at-risk and maximum draw downs, except for year 2010. Finally, from the Sharpe 

index measure we can conclude that, except for year 2009, the BLMV model presented the best risk 

adjusted return. 
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Figure 2: Performance and risk analysis (out of sample)  

 

Ibovespa MV BL_MV M_ETL BL_ETL

Test period: year calendar 2006

Acc. Return 32.9% 40.7% 62.1% 44.3% 53.5%

Average Return 29.2% 35.0% 49.5% 37.6% 43.9%

Max 4.8% 3.3% 4.3% 3.2% 4.2%

Min -4.6% -3.9% -4.0% -4.3% -5.1%

Perc 95% 2.6% 1.8% 2.3% 2.0% 2.0%

Perc 5% -2.5% -1.3% -1.8% -1.6% -1.5%

Volat %pd 24.2% 16.1% 20.1% 17.1% 18.5%

Max DD -21.8% -17.0% -14.1% -18.7% -15.7%

Sharpe Index 0.62 1.29 1.75 1.37 1.61

Test period: year calendar 2007

Acc. Return 43.6% 26.6% 41.0% 33.0% 18.4%

Average Return 37.3% 24.2% 35.3% 29.3% 17.4%

Max 4.8% 2.8% 4.0% 3.5% 3.5%

Min -6.9% -5.0% -4.3% -4.3% -4.2%

Perc 95% 2.6% 1.7% 2.1% 1.9% 1.9%

Perc 5% -3.2% -2.0% -2.0% -2.3% -2.2%

Volat %pd 27.5% 17.7% 21.5% 19.4% 19.7%

Max DD -17.4% -11.9% -17.0% -15.2% -14.9%

Sharpe Index 0.95 0.73 1.12 0.93 0.31

Test period: year calendar 2008

Acc. Return -41.2% -35.5% -38.9% -42.4% -29.7%

Average Return -53.8% -44.4% -49.8% -55.9% -35.7%

Max 13.7% 10.7% 13.2% 12.7% 10.1%

Min -12.1% -6.9% -12.2% -10.1% -7.3%

Perc 95% 4.6% 2.8% 3.7% 3.5% 3.3%

Perc 5% -5.4% -3.6% -3.9% -4.7% -3.5%

Volat %pd 52.3% 34.2% 41.8% 40.2% 36.1%

Max DD -60.0% -42.1% -47.7% -56.6% -39.7%

Sharpe Index neg neg neg neg neg

Test period: year calendar 2009

Acc. Return 82.7% 7.7% 9.7% -0.7% 7.4%

Average Return 61.7% 7.6% 9.5% -0.7% 7.3%

Max 6.9% 2.8% 4.4% 3.1% 2.8%

Min -5.4% -3.8% -5.5% -4.7% -3.5%

Perc 95% 3.3% 1.9% 2.5% 2.0% 1.9%

Perc 5% -3.0% -2.0% -2.7% -2.3% -2.1%

Volat %pd 31.4% 19.2% 25.1% 20.7% 18.7%

Max DD -15.3% -9.7% -11.7% -11.6% -9.2%

Sharpe Index 1.66 neg 0.00 neg neg

Test period: year calendar 2010

Acc. Return 1.0% 12.3% 55.4% 19.3% 10.7%

Average Return 1.1% 11.8% 45.0% 18.0% 10.4%

Max 4.0% 2.8% 3.8% 2.5% 4.0%

Min -4.8% -2.1% -3.7% -2.4% -3.3%

Perc 95% 2.0% 1.5% 1.9% 1.5% 1.9%

Perc 5% -2.1% -1.4% -1.7% -1.3% -1.7%

Volat %pd 20.4% 14.4% 18.9% 13.8% 17.5%

Max DD -18.9% -12.7% -15.1% -12.7% -14.8%

Sharpe Index neg 0.07 1.80 0.53 neg

Test period: year calendar 2011

Acc. Return -10.0% 8.9% 14.8% 10.5% 4.0%

Average Return -21.5% 17.5% 28.3% 20.4% 8.0%

Max 1.9% 2.8% 3.3% 2.3% 2.4%

Min -2.4% -2.3% -2.9% -2.4% -2.1%

Perc 95% 1.6% 1.4% 1.9% 1.4% 1.4%

Perc 5% -1.9% -1.1% -2.1% -1.3% -1.1%

Volat %pd 16.2% 12.5% 19.0% 12.8% 12.6%

Max DD -199.7% -5.3% -15.4% -6.9% -5.6%

Sharpe Index 0.46 0.53 0.91 0.74 neg



Fernandes, Betina; Fernandes, Cristiano; Street, Alexandre (2012). An asset allocation model with inequalities constraints 
and coherent risk measure: an application to Brazilian equities. Revista de Finanças Aplicadas. Publicado em 21/01/2013, 
pp.1-27. 

From figure 3 we can analyze the evolution of accumulated return for the different portfolios. For the 

whole sample period, we can conclude that BLMV model outperformed the MV traditional model. This 

implies that the methodology we used to create our views about expected returns was satisfactory. We 

could add value with those views and get optimal portfolios that performed better out of sample for the 

analyzed period. This result is also positive when we compare the BLMV model with the Bovespa 

index. Except for year 2009 when the index recovered more than 80% and the models didn’t follow this 

movement24, the BLMV model outperformed the index with major magnitude.  

 
  

                                                      
24 One possible explanation for this behavior is that our models only consider allocating among the 45 selected stocks whereas the 
Bovespa index composition depends only on a liquidity rule. 



Fernandes, Betina; Fernandes, Cristiano; Street, Alexandre (2012). An asset allocation model with inequalities constraints 
and coherent risk measure: an application to Brazilian equities. Revista de Finanças Aplicadas. Publicado em 21/01/2013, 
pp.1-27. 

Figure 3: Accumulated performance analysis (out of sample) 

  

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70
ja

n
-0

6

fe
v-

0
6

m
ar

-0
6

ab
r-

0
6

m
ai

-0
6

ju
n

-0
6

ju
l-

0
6

ag
o

-0
6

se
t-

0
6

o
u

t-
06

n
o

v-
0

6

d
e

z-
0

6

Ibovespa MV BL_MV

M_ETL BL_ETL

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

ja
n

-0
7

fe
v-

0
7

m
ar

-0
7

ab
r-

0
7

m
ai

-0
7

ju
n

-0
7

ju
l-

0
7

ag
o

-0
7

se
t-

0
7

o
u

t-
07

n
o

v-
0

7

d
e

z-
0

7

Ibovespa MV BL_MV

M_ETL BL_ETL

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

ja
n

-0
8

fe
v-

0
8

m
ar

-0
8

ab
r-

0
8

m
ai

-0
8

ju
n

-0
8

ju
l-

0
8

ag
o

-0
8

se
t-

0
8

o
u

t-
08

n
o

v-
0

8

d
e

z-
0

8

Ibovespa MV BL_MV

M_ETL BL_ETL

0.80

1.00

1.20

1.40

1.60

1.80

2.00
ja

n
-0

9

fe
v-

0
9

m
ar

-0
9

ab
r-

0
9

m
ai

-0
9

ju
n

-0
9

ju
l-

0
9

ag
o

-0
9

se
t-

0
9

o
u

t-
09

n
o

v-
0

9

d
e

z-
0

9

Ibovespa MV BL_MV

M_ETL BL_ETL

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

ja
n

-1
0

fe
v-

1
0

m
ar

-1
0

ab
r-

1
0

m
ai

-1
0

ju
n

-1
0

ju
l-

1
0

ag
o

-1
0

se
t-

1
0

o
u

t-
10

n
o

v-
1

0

d
e

z-
1

0

Ibovespa MV BL_MV

M_ETL BL_ETL

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

ja
n

-1
1

fe
v-

1
1

m
ar

-1
1

ab
r-

1
1

m
ai

-1
1

ju
n

-1
1

Ibovespa MV BL_MV

M_ETL BL_ETL



Fernandes, Betina; Fernandes, Cristiano; Street, Alexandre (2012). An asset allocation model with inequalities constraints 
and coherent risk measure: an application to Brazilian equities. Revista de Finanças Aplicadas. Publicado em 21/01/2013, 
pp.1-27. 

In figure 4 we can compare the evolution of draw down risk measure among the models and the 

Bovespa index. From the graphs we can conclude that the Bovespa index tends to present higher draw 

downs when compared to the proposed models. This behavior is even greater during crisis periods as 

October 2008, may 2010 and June 2011.  

 
Figure 4: draw down analysis (out of sample) 
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To continue our analysis from risk perspective, in figure 5 we have the evolution of volatility risk 

measure among the models and the Bovespa index. Again we can conclude that the Bovespa index 

tends to present higher and more persistent volatility when compared to the proposed models.  

 

Figure 5: Volatility analysis (moving 21 trading days) 
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FINAL CONSIDERATIONS 

Practitioners are well aware that asset returns are not normally distributed and that investor 

preferences often go beyond mean and variance; however, the implications for portfolio choice are not 

well known. In this study we could obtain insights into optimal asset allocations whether defining 

different objective functions (varying its risk measure) and the inputs of the problem (expected returns 

and covariance matrix). In a series of controlled optimizations, we compare optimal asset allocation 

weights obtained from the traditional mean-variance models (MV) with those from mean-expected tail 

loss (METL), analytic Black-Litterman approach (BLMV) and our proposed model (BLETL). We find 

that for the Brazilian equity market the BLMV model outperformed the MV traditional model, which 

shows that the methodology implemented to create our views about expected returns was successful. 

And also that optimal portfolios generated by BLETL model presented systematically lower losses both 

in terms of value-at-risk and maximum draw downs when compared to the other specifications and to 

the Bovespa index. 

While we believe that we have made progress on important issues in portfolio selection and that our 

exercise is applied to out-of sample portfolio choice problem, there are at least two limitations to our 

approach. First, our information is restricted to past market data (returns and earnings per share) which 

means that investors make decisions based on past information and do not use other conditioning 

information that could infer about the state of the economy. Second, our exercise is a static portfolio 

selection problem. There is an extensive literature that considers the asset allocation problem as 

dynamic, which allows for portfolio weights to change with investment horizon, labor income and other 

economic variables. 
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APPENDIX: A NOTE ON COHERENT RISK MEASURES 

Artzner et al.[1999] propose four axioms which every measure of risk should satisfy. Let X  be a 

stochastic variable on the set ψ , where ψ  is the set of all possible outcomes (all possible risks). A 

risk measure, given by ρ  is the mapping 

 
 ψρ :  (30) 

 

which means that if X  is a possible outcome then ρ(X)  is the risk of the random variable X . 

Suppose a scalar  , they call (X)  a coherent risk measure if the following properties are 

fulfilled: 

  
1. Monotonicity:  ji XX ,  such that ji XX   we have )(X)(X ij   ,  

2. Positive homogeneity: if 0  and X  then (X)X  =)( ,  

3. Sub-additivity: if ji XX ,  then )(X)(X)X(X jiji   ,  

4. Translation Invariance: if X  and   then   (X))(X = .  

 

The first property gives that if an asset jX  is worth more than other asset iX , then the risk of iX  is 

always greater. The second property says that the amount of risk is also dependent on the size of the 

position. In practice, the most desirable property is the sub-additivity. It gives an investor incentive to 

diversify her portfolio, since it ensures that the risk of two assets is less or equal to the risk of the the two 

separate assets. And any risk measure that possesses property 2 and 3 is said to be convex. Choosing 

(0,1)  we can write 

 
 )()(1)(=))((1)())(1( jijiji XXXXXX    (31) 

 

The above definition rules out as incoherent, under general distributional assumptions, risk measures 

based on variance (violates property 4), on VaR (violates property 3) and on semi-variance (violates 

property 4). However, when the asset returns have elliptically symmetric distributions, all of these are 

coherent.  


