An asset allocation model with inequalities constraints and coherent risk measure: an application to Brazilian equities

Betina Dodsworth Fernandes, Cristiano Fernandes, Alexandre Street

Resumo


We propose a method for optimal portfolio selection built on the Black and Litterman model and with two major contributions. We introduce in the investors'objective function a risk measure named expected tail loss, which is useful in portfolio selection context as it supports the benefits of diversification and we allow investors'views to be expressed in terms of linear inequalities among expected returns, which seems more natural in the practice of portfolio selection. Further we implement the models using market database applied to Brazilian equities. The results show that our approach leads to lower risk optimal portfolios and that our proposed methodology to implement the investors'subjective views led to optimal portfolios with superior outcomes.

Referências


Artzner, P., Delbaen, F., Eber, J. M., Heath, D. (1999): Coherent measures of risk", in Mathematical Finance, Vol 9, 203-28.

Basu, Sanjoy (1977): Investment performance of common stocks in relation to their price-earnings ratios: a test of eficient market hypothesis",Journal of Finance, Vol 32, 663-682.

Basu, Sanjoy (1983): The relationship between earnings yield, market value and the return for NYSE common stocks: further evidence", Journal of Financial Economics, Vol 12, 129-156.

BenTal, A., Nemirovski, A. (1998): Robust convex optimization", Mathematics of Operations Research, Vol 23, 769-805.

BenTal, A., Nemirovski, A. (1999): Robust solution of uncertain linear programs", Operations Research Letters, Vol 25, 1-13.

Bera, A., Park, S. (2008): Optimal Portfolio Diversication Using Maximum Entropy Principle",Econometric Reviews, Vol 27, 484-512.

Bertsimas, D., Lauprete, G.J., Samarov, A. (2004): Shortfall as a risk measure: properties, optimization ans applications, Journal of Economic Dynamics and Control, Vol. 28, 1353-1381.

Black, F. (1989): Universal hedging: Optimizing currency risk and reward in international equity portfolios", Financial Analysts Journal, July-August,16-22.

Black, F., Litterman, R. (1990): Asset allocation Combining investor views with market equilibrium", Fixed income research, Goldman Sachs.

Black, F., Litterman, R. (1992): Global Portfolio Optimization", Financial Analysts Journal, September-October, 28-43.

Christodoulakis, G. (2002): Bayesian Optimal Portfolio Selection: the Black-Litterman Approach", Unpublished paper.

Dowd, K. (1998): Beyond value at risk: The New Science of Risk Management", New York: Wiley.

Drobetz, W. (2001): How to Avoid the Pitfalls in Portfolio Optimization? Putting the Black-Litterman Approach at Work", Financial Markets and portfolio Management, Volume 15, No 1.

Fama, E.F.(1965): The behaviour os stock prices", Journal of Business, Vol 37, 34-105.

Ferguson, K., Platen, E. (2006): On the distributional characterization of daily log-returns of a world stock index", Applied Mathematical Finance, Vol13, 19-38.

Gabaix, X., Gopikrishnan, P., Plerou, V., Stanley, H.E.(2003): A theory of power law distributions in nancial market

uctuations", Nature, Vol 423, 267-270.

Goldfarb, D., Iyengar, G. (2001): Robust portfolio selection problems", Mathematics of Operations Research, Vol 28, 1-38.

He, G., Litterman, R. (1999): The Intuition Behind Black-Litterman Model Portfolios", Goldman Sachs Investment Management Research.

Huang, C.F., Litzenberger, R. (1988): Foundations for Financial Economics", Elsevier, North- Holland.

Jae, J., Westereld, R.,Keim, D. (1989): Earnings Yields, Market Values and Stock Returns", Journal of Finance, Vol 44,135-148.

Jewan, D., Guo, R., Witten, G. (2008): Copula Marginal Expected Tail Loss Ecient Frontiers for CDOs of Bespoke Portfolios", Proceedings of the World Congress on Engineering, Vol II WCE 2008, July 2-4.

Jorion, P. (2000): Value at Risk: The new benchmark for managing nancial risk", McGraw-Hill, New York.

Krokhmal, P., Palmquist, J., Uryasev, S. (2001):Portfolio Optimization with Conditional Value-at-Risk Objective and Constraints", the Journal of Risk, Vol 4, No 2, Winter 2001/2.

Kroner, K.,Ng, V. (1998): Modeling Asymmetric Comovements of Asset Returns", Review of Financial Studies, Vol 11, 817-844.

Mandelbrot, B. (1963): The variation of certain speculative prices", Journal of Business, Vol 36, 394-419.

Markowitz, H. (1952): Portfolio Selection", Journal of Finance, 77-91.

Mausser, H., Rosen, D. (1998): Beyond VaR: From Measuring Risk to Managing Risk", Algo Research Quarterly, Vol 1, No 2.

Michaud, R. (1989): Markowitz Optimization Enigma: Is Optimized Optimal?", Financial Analysts Journal, January-February, 31-42.

Nicholson, F. (1960): Price-Earnings Ratios", Financial Analysts Journal, July-August, Vol.16, 43-45.

Rachev, S. T., Martin, R. D., Racheva, B., Stoyanov, S. (2006): Stable ETL optimal portfolios and extreme risk management", FinAnalytica.

Rockafellar, R. T., Uryasev, S. (2000): Optimization of conditional valueat- risk", in Journal of Risk, Vol 3, 21-41.

Satchell, S., Scowcroft, A. (2000): A demystification of the Black-Litterman model: Managing quantitative and traditional portfolio construction", Research papers in management studies, Judge Institute of Management Studies, University of Cambridge.


Texto completo: PDF

Apontamentos

  • Não há apontamentos.




Licença Creative Commons
Este trabalho está licenciado sob uma Licença Creative Commons Attribution 3.0 .

_______________

Revista de Finanças Aplicadas

ISSN: 2176-8854

Contador Estatístico

Indexadores e diretórios

DOI Logotipo Gale Cengage Learning DOAJ

Adicionais
Gale Cengage Learning
Latindex - Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal
Livre - Revistas de Livre Acesso
Sumários - Sumários de Revistas Brasileiras
PKP - Public Knowledge Project