Credit Rationing and High Interest Rates: An Application of Structural Vector Autoregression and Vector Error-Correction Models

André Cutrim Carvalho, David Ferreira Carvalho

Resumo


OBJECTIVE
This article analyzes the behavior of monetary policy credit rationing in Brazil, mainly the performance of the supply of private bank loans due to the oscillations in the default rate and borrowing base interest rate.

METHODOLOGY
It uses the default of corporate loans borrowing and the basic interest rate of the Central Bank of Brazil between 2000 and 2009. We used the techniques of cointegration and co-characterization to identify a system of structural vector autoregression and error correction, taking into account the existence of a structural break in the series.

RESULTS AND CONCLUSIONS
The test results identified a linear long-run relationship be-tween loans, prime rate and default, where the variance de-compositions indicate that the base interest rate explains most of the fluctuations in the short and long term supply of private bank loans.

PRACTICAL IMPLICATIONS
The result highlights the influence of the base rate of interest on loan volume. Besides contributing to government decisions, this finding is relevant to the planning activity of institutions and businesses that extend credit or depend on it for carry out its sales activities.

KEYWORDS
Credit Rationing; Private Bank Loans; Vector Auto Regression.


OBJETIVO
É analisado o comportamento da política monetária de racionamento do crédito no Brasil, principalmente, o desempenho da oferta de crédito bancário privado diante das oscilações na taxa de inadimplência e da taxa de juros.

METODOLOGIA
As séries de oferta de crédito, de inadimplência das pessoas jurídicas tomadoras de empréstimos e a taxa de juros básica do Banco Central do Brasil referem-se período de 2000 e 2009. Utilizaram-se as técnicas de co-integração e co-caracterização para identificar um sistema de vetores autorregressivos estruturais e de correção de erros, levando-se em consideração a existência de uma quebra estrutural nas séries.

RESULTADOS E CONCLUSÕES
Os testes identificaram uma relação linear de longo prazo entre crédito, taxa básica de juros e inadimplência, onde as decomposições das variâncias indicam que a taxa de juros básica explica boa parte das flutuações de curto e longo prazo na oferta dos créditos bancários privados.

IMPLICAÇÕES PRÁTICAS
O resultado destaca a influência da taxa básica de juros sobre o volume de crédito. Além de contribuir para decisões governamentais, essa constatação é relevante na atividade de planejamento de atividades de instituições e empresas que concedem crédito ou que dependem dele para efetivar as suas vendas.

PALAVRAS-CHAVE
Racionamento de Crédito; Créditos Bancários Privados; Vetores Auto-Regressivos.

Referências


BLANCHARD, Jean Olivier & FISHER, Stanley (1988).Lectures on macroecnomics. Cambridge/ EUA, MIT.

BLANCHARD, Jean Olivier & QUAH, D (1989).”The dynamics effects of agrégate and suplí disturbances”. American Economica Review, v.79, p.655-673.

BLINDER, Alan S. & Stiglitz, Joseph E. (1983).”Money, Credit Constraints, and Economic Activity.”American Economic Review, Papers and Proceedings, 73, 2 may, p.297-302.

BENANKE, Ben (1986).”Alternative Explanations of Money-Income Correlation”.Carnegie-Rochester Conference Series on Public Policy 25, p.49-100.

BORGES, Bráulio Lima & SILVA, Maximiliano Barbosa da (2006).”Estimando a Taxa de Juros Natural para o Brasil: Uma aplicação da Metodologia VAR Estrutural”.Estudos Econômicos.São Paulo, V.36, N.1, p.87-114, jan-mar.

BUENO, Rodrigo de Losso da Silveira (2008). Econometria de Séries Temporais. São Paulo, Cengage Learning.

CHAREMZA, Wojciech W. & DEADMAN, Derek F (2003).New Directions Econometric Practice: General to Specific Modelling, Cointegration and Vector Autoregression.Cheltenham, Edward Elgar.

DICKEY, D.A. & FULLER, W.A.(1979).”Estimators for autoregressive time series with a unit root”. Journal of the American Statistical Association 79, p.355-367.

DE MEZA, David & WEBB, David C.(1987). “Too Much Investiment: A Problem of Asymmetric Information.” Quartely Journal of Economics.102, 2(may), p.281-292.

ENGLE, Robert & GRANGER, Clive (1991). Cointegration and Error Correction: Representation, Estimation and Testing. In: Long-Run Economic Relations: Readings in Cointegration.Advanced Texts in Econometrics. R.F.Engle and C.W.J. Granger.(Ed.).New York, Oxford University Press.

ENDERS, W (1995). Applied Econometric Time Series. New York, John Willey & Sons,

FUINHAS, José Alberto(2002). O Canal do Crédito Bancário na Economia Portuguesa: Análise econométrica do período de 1977 a 1998.Lisboa, UBI.

GRANGER, C.W.J & NEWBOLD, P (1974). “Spurios regression in econometrics”. Journal of Econometrics, v. 2, p. 112-120.

GREENWALD, B.C.& STIGLITZ, J.E & WEISS.(1984).A. Informational imperfections in the Capital Market and Macroeconomic Fluctuations.The American Economic Review, Vol.74, n.2.

GREENWALD, B.C. & STIGLITZ, J.E.(1987).”Keynesian, New Keynesian and New Classical Economics”. Oxford Economic Papers, Vol.39, n.1.

GREENWALD, B.C.& STIGLITZ, J.E.(1988).Imperfect information, Finance Constraints, and Business Fluctuacions. In: Meir Kohn and Sho-Chieh Tsiang. (Org.). Finance Constraints, Expectations, and Macroeconomics. Clarendon Press-Oxford.

GUJARATI, D.N. (1995). Basic Econometrics.New YorK.Mc-Graw-Hill.

HENDRY, D.F. & JUSELIUS, K. (2000). “Explaining Cointegration Analysis”.Energy Journal, 21.

HAMILTON, James D. (1994). Time series analysis. New Jersey, Princepton Univesity Press.

HERMANN, Jennifer.(2000).O Modelo de Racionamento de Crédito; a Política Monetária Novo-Kenesyana : uma análise crítica.Revista de Economia Política. SP, V.20, abril-junho.

HARVEY, Andrew C.(1990).The Econometric Analysis of Times Series. Massachuttes, MIT Press.

JAFFEE, Dwight.(1971).Credit Rationing and the Commercial Loan Market: an econometric study of the structure of the commercial loan market.Ney York, Wiley and Sons.

JAFFEE, D & STIGLITZ, J.E.(1990).Credit Rationing. In: Handbook of Monetary Economics. Benjamin M.Friedman and Frank H.Hahn (Org.).New York, North-Holland.

JOHANSEN, Soren (1991). Statistical Analisys of Cointegração Vectors.in: Long-Run Economic Relations: Readings in Cointegration.Advanced Texts in Econometrics. R.F.Engle and C.W.J. Granger.(Ed.). New York, Oxford University Press.

JOHANSEN, S., MOSCONI, R., e NIELSEN, B (2000). Cointegration Analysis in the Presence of Structural Breaks in the Deterministic Trend. Econometrics Journal, 3:216-249.

JOHNSTON, Jack & DINARDO, John (2003). Métodos Econométricos. São Paulo, MacGraw-Hill.

LIU, TC (1960). “Underidentification, structural estimation, and forescasting”. Econometriac, 28, p.855-865.

LÜTKEPOHL, H & KRÃTZIG, M. (2004). Applied time series econometrics. Cambridge, UK, University Press.

LÜTKEPOHL, Helmut(2005). New introduction multiple time series analysis. Ny, Springer.

MADDALA, G.S. & KIM, IN-MOO.(1998).Units Roots, Cointegration and Structural Change. Cambridge, Cambridge University Press.

NELSON, Charles R. & PLOSSET, Charles I.(1982).”Trends and Random Walks in Macroeconomic Time Series: Some Evidence and Implications”. Journal of Monetary Economics, Vol. 10.

PESARAN, M.H. & SHIN, Y.(1996).”Cointegration and speed of convergence to equilibrium”. Journal of Econometrics 71, p.117-143.

SIMS, C.A.(1986).”Are Foresting Models Usable for Policy Analysis ?”Quarterly Review, Federal Reserve Bank of Minneapolis.10, p.2-16.

SIMS, C.A., STOCK, J. & WATSON, M. (1990).”Inference in linear time series models with some unit roots”. Econometrica, 58, p.113-144.

STIGLITZ, J & Weiss, A.(1981).Credit Rationing in Markets With Imperfect Information. American Economic Review. V.71.p.393-410.

STIGLITZ, Joseph E.(1985).”Credit Markets and the Control of Capital.”Journal of Money, Credit and Banking, Vol.17, n.2, p.133-152, maio.

STIGLITZ, Joseph E.(1988). “Money, Credit and Business Fluctuation”.The Economic Record, Vol.64, n,187, p.307-322, dez.

STIGLITZ, Joseph E.(1990). “Peer Monitoring and Credit Markets”.World Bank Economic Review, Vol.4, n.3, p.351-366.

STIGLITZ, J.E. & WEISS.(1992).A.”Assimmetric Information in Credit Markets and Its Implications for Macroeconomics”. Oxford Economic Papers, 44, p.162-192.

STOCK, James H. & WATSON, Mark W (1998). “Variable Trends in Economic Time Series”. Journal of Economic Perspectives, Vol.2, n. 3.

TELES, Vladimir K & MIRANDA, Mauro Costa (2006).

ZIVOT, E. and ANDREWS, K. (1992), Further Evidence On The Great Crash, The Oil Price Shock, and The Unit Root Hypothesis, Journal of Business and Economic Statistics, 10 (10), pp. 251–70.


Texto completo: PDF

Apontamentos

  • Não há apontamentos.




Licença Creative Commons
Este trabalho está licenciado sob uma Licença Creative Commons Attribution 3.0 .

_______________

Revista de Finanças Aplicadas

ISSN: 2176-8854

Contador Estatístico

Indexadores e diretórios

DOI Logotipo Gale Cengage Learning DOAJ

Adicionais
Gale Cengage Learning
Latindex - Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal
Livre - Revistas de Livre Acesso
Sumários - Sumários de Revistas Brasileiras
PKP - Public Knowledge Project