Gestão de Riscos de Mercado no Brasil Durante Períodos Turbulentos

Antonio Marcos Duarte Junior, Raphael Pinho Ramos Silva

Resumo


GESTÃO DE RISCOS DE MERCADO DURANTE PERÍODOS TURBULENTOS

OBJETIVO
Nosso objetivo neste trabalho é propor uma estratégia dinâmica para o controle dos riscos de mercado de carteiras de investimentos com o uso de derivativos durante períodos turbulentos, quando há maior incerteza embutida na evolução dos preços dos ativos negociados nos mercado financeiros.

METODOLOGIA
A proposta está baseada no uso de um modelo de programação linear mista que minimiza a perda máxima da carteira com a compra/venda de diferentes derivativos. Para a verificação da eficiência da pro-posta utilizamos estudos com dados reais do mercado financeiro, incluindo doze das ações brasileiras mais líquidas e oito derivativos. Os cenários históricos utilizados nos exemplos numéricos foram selecionados para cobrir quatro períodos especialmente turbulentos no mercado financeiro brasileiro: ataque terrorista ao World Trade Center e Pentágono, eleição presidencial brasileira de 2002, “Escândalo dos Bingos”, e o início da “Crise do Mensalão”. Desta forma, com dados reais e períodos de elevada incerteza, pudemos verificar a efetividade da proposta na redução dos riscos de mercado quando comparada a outras técnicas de hedge comumente utilizadas por gestores de carteiras de investimentos.

RESULTADOS E CONCLUSÕES
Os resultados obtidos dos estudos numéricos comprovam a eficiência da proposta. A redução final no nível de risco de mercado atingida chegou a 75% do valor inicial, dependendo do número e do tipo dos derivativos utilizados pelo gestor da carteira. Comparativamente a outras estratégias mais conhecidas pelos operadores do mercado brasileiro, como hedge com o uso das “letras gregas”, a proposta sempre atingiu reduções maiores no nível de risco de mercado, comprovando assim a eficiência da proposta.

IMPLICAÇÕES PRÁTICAS
Lembremos que mercados emergentes, como o brasileiro, são particularmente sensíveis a instantes de maior incerteza, quando podemos observar a elevação da volatilidade dos preços dos ativos negociados no mercado financeiro. A estratégia proposta é particularmente interessante para gestores de carteiras operando durante períodos de estresse nos mercados financeiros que busquem reduções acentuadas do risco de mercado das carteiras. A proposta permite ao gestor controlar a perda segundo o pior dentre os cenários antecipados, evitando assim perdas que poderiam ser consideradas catastróficas para sua car-teira. A proposta pode ser facilmente implementada na rotina diária de gestores de carteiras com o uso de algum pacote de otimização. Para problemas de pequeno porte a proposta pode até mesmo ser implementada com o uso do Solver do Microsoft Excel.

PALAVRAS-CHAVE:
Derivativos, Gestão de Riscos de Mercado, Hedge, Volatilidade.


MARKET RISK MANAGEMENT DURING TURBULENT PERIODS

OBJECTIVE
Our objective in this work is to propose a dynamic strategy to control the market risk of portfolios with derivatives during turbulent periods, that is, those periods of time when the prices of assets are more uncertain.

METHODOLOGY
The proposal is based on a mixed linear programming problem that minimizes the maximum loss of the portfolio after buying/selling different derivatives contracts. In order to study the efficiency of the proposal we rely on simulations with data collected from the Brazilian financial markets, including twelve of the most negotiated stocks in local markets and eight derivatives. The historical scenarios were chosen to cover four very turbulent periods in the Brazilian financial markets: the terrorist attacks to the World Trade Center and the Pentagon, the presidential election period in Brazil during the second semester of 2002, the “Escândalo dos Bingos”, and the beginning of the “Crise do Mensalão”. This way, we were able to compare de efficiency of our proposal when compared to alternatives for hedging that are usually adopted by portfolio managers working in the Brazilian financial markets.

RESULTS AND CONCLUSIONS
The results obtained from the simulations showed a reduction of the market risk up to 75% from its initial level, depending on the derivatives chosen by the portfolio manager. When compared to other approaches used by traders in local markets, such as the “Greeks”, our proposal attained large reductions for the market risk, proving to be superior as a hedging technique.

PRACTICAL IMPLICATIONS
Let us not forget that emerging markets, such as the Brazilian, are especially sensitive to periods with increasing international uncertainty, what is directly reflected in the rising values for their price volatility. The strategy proposed is particularly interesting for portfolio managers because it can provide substantial reductions in the market risk of their portfolios. The proposal allows portfolio managers to control their worst case scenarios, avoiding a catastrophic loss. The proposal can be implemented with the use of any optimization package. For small problems, the proposal can be implemented with the use of the Microsoft Excel Solver.

KEYWORDS
Derivatives, Hedge, Market Risk Management, Volatility.

Referências


ADMATI, A.R.; BHATTACHARYA, S.; PLEIDERER, P. & ROSS, S.A. (1986) On Timing and Selectivity. Journal of Finance, vol. 41, n. 2, p. 715-730.

ALEXANDER, C. & BARBOSA, A. (2008) Hedging Index Exchange Traded Funds. Journal of Banking & Finance, vol. 32, n. 2, p. 326-337.

ANKIRCHNER, S; DIMITROFF, G.; HEYNE, G. & PIGORSCH, C. (2012). Fu-tures Cross-Hedging with a Stationary Basis. Journal of Financial and Quantitative Analysis, vol. 4, n. 6, p. 1361-1395.

APERGIS, N. & GABRIELSEN, A. (2012). Optimal Hedge Ratio Estimation During the Credit Crisis: An Application of Higher Moments. Frontiers in Finance and Economics, vol. 9, n. 2, p. 64-84.

BEMPORAD, A.; BELLUCCI, L. & GABBRIELLINI, T. (2014). Dynamic option hedging via stochastic model predictive control based on scenario simu-lation. Quantitative Finance, vol. 14, n. 10, p. 1739-1751.

BLACK, F. & LITTERMAN, R. (1991). Asset Allocation: Combining Investor Views with Market Equilibrium. Journal of Fixed Income, vol. 1, n. 1, p. 7-18.

CAMPBELL, J.Y.; MEDEIROS, K.S. & VICIEIRA, L.M. (2010). Global Currency Hedging. The Journal of Finance, vol. 65, n. 1, p. 87-121.

CARR, P. & WU, L. (2014). Static Hedging of Standard Options. Journal of Fi-nancial Econometrics, vol. 12, n. 1, p. 3-46.

CFA INSTITUTE. (2009) Corporate Finance and Portfolio Management (Volume 4). Wiley, New Jersey.

CHAKRABORTY, A. & BARKOULAS, J.T. (1999). Dynamic Futures Hedging in Currency Markets. The European Journal on Finance, vol. 5, n. 3, p. 299-314.

CHANG, C.; McALEER, M. & TANSUCHAT, R. (2011). Crude oil hedging strat-egies using dynamic multivariate GARCH. Energy Economics, vol. 33, n. 5, p. 912–923.

CHEN, S.S.; LEE, C. & SHRESTHA, K. (2003). Futures Hedge Ratios: A Re-view. Quarterly Review of Economics and Finance, vol. 43, n. 3, p. 433-465.

CUSATIS, P. & THOMAS, M. (2005) Hedging Instruments and Risk Manage-ment: How to Use Derivatives to Control Financial Risk in Any Market. McGraw-Hill, New York.

DAHL, M.; GLAR, S. & MOLLER, T. (2011). Mixed dynamic and static risk-minimization with an application to survivor swaps. European Actuarial Journal, vol. 1, n. 2, p. 233-260.

DUARTE Jr., A.M. (2005) Gestão de Riscos para Fundos de Investimentos. Pearson, São Paulo.

FABOZZI, F.J. (2005) The Handbook of Fixed Income Securities. McGraw-Hill, New York.

FABOZZI, F.J. & MARKOWITZ, H.M. (2011) The Theory and Practice of In-vestment Management. Wiley, New Jersey.

FUSCO, R.A.; McLEAVEY, D.W.; PINTO, J.E. & RUNKLE, D.E. (2007). Quanti-tative Investment Analysis. Wiley, New Jersey.

GHORBEL, A. & A. TRABELSI, A. (2012). Optimal dynamic hedging strategy with futures oil markets via FIEGARCH-EVT copula models. International Journal of Managerial and Financial Accounting, vol. 4, n. 1, p. 1-28.

HAMMOUDEH, S.M.; YUAN, Y.; McALEER, M. & THOMPSON, M.A. (2010). Precious metals–exchange rate volatility transmissions and hedging strategies. International Review of Economics & Finance, vol. 19, n. 4, p. 633–647.

HENRIKSSON, R.D. & MERTON, R.C. (1981). On Market Timing and Invest-ment Performance: Statistical Procedures for Evaluating Forecasting Skills. Journal of Business, vol. 54, n. 2, p. 513-533.

HULL, J.C. (2009) Options, Futures and Other Derivatives. Prentice Hall, New Jersey.

JONDEAU, E. & ROCKINGER, M. (2006). Optimal Portfolio Allocation under Higher Moments. Journal of European Financial Management, vol. 12, n. 1, p. 29-55.

JORION, P. (2009) Value-at-Risk: The New Benchmark for Managing Finan-cial Risk. McGraw-Hill, New York.

JUHL, T.; KAWALLER, I.G. & KOCH, P.D. (2012). The Effect of the Hedge Horizon on Optimal Hedge Size and Effectiveness When Prices are Coin-tegrated. Journal of Futures Markets, vol. 32, n. 9, p. 837–876.

KALLSEN, J. & PAUWELS, A. (2013). Variance-Optimal Hedging for Time-Changed Lévy Processes. Applied Mathematical Finance, vol. 18, n. 1, p. 1-28.

KONNO, H. & YAMAZAKI, H. (1991). Mean-Absolute Deviation Portfolio Opti-mization Model and Its Application to Tokyo Stock Market. Management Science, vol. 37, n. 3, p. 519-531.

LIOUI, A. & PONCET, P. (2002). Optimal Currency Risk Hedging. Journal of International Money and Finance, vol. 21, n. 2, p. 241-264.

MARKOWITZ, H.M. (1959) Portfolio Selection: Efficient Diversification of In-vestments. Wiley, New York.

MARKOWITZ, H.M.; TODD, P., XU, G. & YAMANE, Y. (1992). Fast Computa-tion of Mean-Variance Efficient Sets Using Historical Covariances. Jour-nal of Financial Engineering, vol. 1, n.1, 117-132.

MARKOWITZ, H.M. (1993). Computation of Mean-Semivariance Efficient Sets by the Critical Line Algorithm. Annals of Operations Research, vol. 45, n.2 , p. 307-317.

POWER, G.J.; VEDENOV, D.V.; ANDERSON, D.P. & KLOSE, S. (2013). Market volatility and the dynamic hedging of multi-commodity price risk. Applied Economics, vol. 45, n. 27, p. 3891-3903.

RISKMETRICS. (1994) RiskMetrics. Technical Report, J.P.Morgan, New York.

SALVADOR, E. & ARAGÓ, V. (2014). Measuring Hedging Effectiveness of In-dex Futures Contracts: Do Dynamic Models Outperform Static Models? A Regime-Switching Approach. Journal of Future Markets, vol. 34, n. 4, p. 374-398.

SIM, A. & ZURBRUEGG, R. (2001). Optimal Hedge Ratios and Alternative Hedging Strategies in the Presence of Cointegrated Time-Varying Risks. European Journal of Finance, vol. 7, , n. 2, p. 269-283.

TAHA, H.A. (2008) Pesquisa Operacional. Prentice Hall, São Paulo.

YIP, W.Y.; STEPHENS, D. & OLHEDE, S. (2010). Hedging Strategies and Min-imal Variance Portfolios for European and Exotic Options in a Lévy Mar-ket. Mathematical Finance, vol. 20, n. 4, p. 617–646.


Texto completo: PDF

Apontamentos

  • Não há apontamentos.




Licença Creative Commons
Este trabalho está licenciado sob uma Licença Creative Commons Attribution 3.0 .

_______________

Revista de Finanças Aplicadas

ISSN: 2176-8854

Contador Estatístico

Indexadores e diretórios

DOI Logotipo Gale Cengage Learning DOAJ

Adicionais
Gale Cengage Learning
Latindex - Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal
Livre - Revistas de Livre Acesso
Sumários - Sumários de Revistas Brasileiras
PKP - Public Knowledge Project